Analysis of Physiological Signals for Stress Recognition with Different Car Handling Setups

نویسندگان

چکیده

When designing a car, the vehicle dynamics and handling are important aspects, as they can satisfy purpose in professional racing, well contributing to driving pleasure safety, real perceived, regular drivers. In this paper, we focus on assessment of emotional response drivers while track with different car setups. The experiments were performed using dynamic simulator prearranged We recorded various physiological signals, allowing us analyze which setup is more influential terms stress arising subjects. logged two skin potential responses (SPRs), electrocardiogram (ECG) signal, eye tracking information. experiments, three setups used (neutral, understeering, oversteering). To evaluate how these affect drivers, analyzed their signals statistical tests (t-test Wilcoxon test) machine learning (ML) algorithms. results test show that SPR provide higher significance when evaluating among compared ECG signals. As for ML classifiers, count number positive or “stress” labels 15 s time intervals each subject particular setup. With support vector classifier, mean value four subjects equal 13.13% base setup, 44.16% oversteering 39.60% understeering end, our findings appears be least stressful, system enables effectively recognize configurations.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

an application of fuzzy logic for car insurance underwriting

در ایران بیمه خودرو سهم بزرگی در صنعت بیمه دارد. تعیین حق بیمه مناسب و عادلانه نیازمند طبقه بندی خریداران بیمه نامه براساس خطرات احتمالی آنها است. عوامل ریسکی فراوانی می تواند بر این قیمت گذاری تاثیر بگذارد. طبقه بندی و تعیین میزان تاثیر گذاری هر عامل ریسکی بر قیمت گذاری بیمه خودرو پیچیدگی خاصی دارد. در این پایان نامه سعی در ارائه راهی جدید برای طبقه بندی عوامل ریسکی با استفاده از اصول و روش ها...

Detection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods

Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...

متن کامل

Continuous Estimation of Stress Using Physiological Signals during a Car Race

Mental stress refers to the feeling of strain and anxiety caused by internal and/or external factors. Stress may have both positive and negative influences on cognitive performance. For example, small amounts of stress may improve concentration, athletic performance, and reaction speed. However, excessive stress may harm health, and disturb concentration and motor control. Furthermore, increase...

متن کامل

Emotion recognition from physiological signals.

Emotion recognition is one of the great challenges in human-human and human-computer interaction. Accurate emotion recognition would allow computers to recognize human emotions and therefore react accordingly. In this paper, an approach for emotion recognition based on physiological signals is proposed. Six basic emotions: joy, sadness, fear, disgust, neutrality and amusement are analysed using...

متن کامل

Emotion Recognition from Physiological Signals

Nowadays keeping healthy has become one of the most important topics in our daily life. Keeping good mood is very helpful to one’s health. A lot of smart sensing systems have been designed and developed to detect human emotions. The physiological parameters obtained from the sensing system are then received and analyzed by computers. The physiological dataset collected by computers is then proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2022

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics11060888